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Diffusion of chemical elements into an ionized multicomponent gaseous mixture is 
considered in a model of local thermodynamic equilibrium. A linear dependence of 
the mass flows of chemical elements and the heat flow on the temperature gradient, 
mass fractions of the chemical elements, and the electric field is obtained. An 
example is given of a calculation of the effective diffusion coefficients for a hy- 

drogen-helium mixture. 

The solution of hydrodynamic problems for a multicomponent gas or plasma, given chemical 
reactions oourring at finite rates, constitutes a complex problem. Therefore most of them 
are considered in limiting cases ("frozen" or locally balanced flows). In the first case, 
numerical integration of the system of hydrodynamic equations is complicated because of 
the large number of diffusion equations for the separate components. 

In the second case (within the limits of local thermodynamic equilibrium) the kinetic 
component equations are purely formal and methods for their solutions are lacking, though 
a phenomenological description of the medium is nevertheless possible [i, 2]. It is worth- 
while to pass from component diffusion equations to diffusion equations for the chemical 
elements, i.e., the number of variables is substantially decreased in most cases. 

In this work, effective diffusion and thermal-conductivity coefficients relating the 
mass flows of chemical elements and the heat flow to the temperature gradient and gradients 
of the mass fractions of chemical elements and the electric field are introduced~ 

Suppose we have a mixture of N components, chemical reactions occurring between them. 
Let us consider for each component a kinematic equation with elastic- and inelastic-colli- 
sion integrals in ~e right side. We assume that the cross section of inelastic processes 
is less than the cross section of the elastic processes; the elastic-collision integral 
for charged and neutral particles is Boltzmann (we also include the charge-exchange reaction 
in the Boltzmann collision integral). The equilibrium function for particle distribution 
is Maxwellian, since the cross sections of inelastic processes are small and the Chapman-- 
Enskog method can be used to solve the kinematic equation, i~e., the inelastic-collision 
integral is not taken into account in the kinematic equation~ The presence of the latter 
is indicated in the hydrodynamic equations~ in particular, a chemical term appears in the 
diffusion equation. We may decide at the hydrodynamic level whether flow is "frozen" or 
locally balanced relative to diffusion as a function of the parameter. 
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Here T and z x are the characteristic diffusion chemical reaction rates, L is the character- 
istic hydrodynamic length, and D is the diffusion coefficient. When e >> ! flow is frozen, 
while when s << I, it is locally balanced. 

We will consider a system that is in mechanical equilibrium, at each point of which 
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chemical equilibrium holds at the local temperature. In this 
case, multicomponent diffusion reduces to diffusion of the chem- 
ical elements. Let us define the mass flow and mass fraction 
of a chemical element, 

N N ma z ma 
Ia = Uia m---~ Ii; ca = - -  ciu 

i = i  i = i  
(1) 

Here uia is the number of nuclei of element a in component i, 
m i and m a are the masses of component i and atom a, ci is the 
mass fraction of component i, and I i is the mass flow of com- 
ponent i. 

We will proceed on the basis of an equation for I i previously [3] obtained in order to 
obtain the effective diffusion and thermal-conductivity coefficients, in this case neglecting 
thermal diffusion, 

N 
~- n2 m 

Ii T -  i3=~.= mjDi jd j ; .  (2) 

d j = v x j = T  F j - -  T- Fh ' 
h=t 

(3) 

where xj = n~/ n are the relative concentrations, Fj are the forces acting on component j, 
p is pressure, p and n are the total density and concentrations, and pj and nj are the density 
and concentration of component j. We assume that the gaseous mixture is ideal, so that the 
chemical equilibrium equation for each component of the mixture can be written in the form 

l 

where Ki(T , p) is the equilibrium constant and {x t} is the set of relative concentrations of 
the basis components. We find VXj in Eq. (3) by using Eq. (4), 

vx,= + tvr (5) 

The coefficients for Vxt and V T can be analytically determined. In addition, we will use the 
dependence of xj on the mass fractions of chemical elements, temperature, and pressure, 

x, = x,  ( q , . .  ~ o _ , ,  ,,, r ) ,  

where N a is the number of chemical elements forming the mixture. Then V xt is a function of 

Aca and A T. 

Vx~ = Z k-5-%% %§ Vc" q- \ OT ]{~,~},p AT. 
a = i  

(6) 

The coefficient for the gradients in Eq. (6) can be calculated both numerically on a computer 
and analytically. Substituting Eq. (6) in (5), Eq. (5) in (2), and Eq. (2) in (I) and group- 
ing terms with identical gradients, we obtain the desired diffusion coefficients: 

~.N Na+i uj t ,( OX t 

= Z ",o -7- m,V ,x, Z T;- t 
i , j = i  l ~ i  
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u Jr 
D T T ~ ,=-~-mjD~jxj[-~jk-~-),,t~t } :  ,=i 

i , j = i  

N 

D~ = ~ u ~ m J T  Dgz j. 
L~-i 

The mass flow of a chemical element here is represented in the form 

Na-t 
D E eE Ia-- nma k b~=i DabVCb-~ - DTv lnT q- a -~--j. (7) 

To obtain the effective thermal-conductivity coefficients we proceed, as in [4], on the basis 
of an equation for a heat flow, 

N Ii 
Iq=--~vT§ ~h~ 

i = i  rni ' 

where X is the thermal conductivity in the "frozen' mixture of gases and h i is the enthaipy 
for one particle of type i. Following transformations similar to those used in obtaining 
Eq. (7), we find the effective coefficients of thermal conductivity, 

~a = -- z.~ ~ hi - '~ miD~)xi Z u~t~ I 8% I ; 
i , j = i  t = l  k /cbr  

N 
n E~ = -- Z h~ ~- miD~jnjzi. 

i , j= t  

Then the heat flow is written in the form 

Na--i  
eE ( 8 )  I~=--~ lV l n T - -  ~ ~VC~--~E-~.  

N 

We have omitted in Eqs. (7) and (8) a term on the order of N ~(pk/p)F h- 
k=i 

Unlike previous works [4], no artificial constraints are imposed on the mass flows in 
finding the heat flow (8). The coefficients of thermal conductivity defined above do not 
coincide with the corresponding equations in a completely ionized plasma obtained in [5], 
since the calculation of multicomponent diffusion coefficients Dij is carried out taking in- 
to account a finite number of Sonin polynomials. 

Let us present as an example results from a numerical calculation of the effective dif- 
fusion coefficients in a hydrogen--heliummixture for parameters characteristic for the entry 
of a space vehicle into the atmosphere of Jupiter. 

A mixture was considered at a pressure of i0 atm and temperatures between 3000~ and 
8000~ and it was assumed that a single hydrogen dissociation reaction occurs. Taking into 
account the rate of the chemical reactions [6], we obtain ~ >> I, i.e., the mixtrue is chem- 
ically balanced relative to diffusion and consists of the components H2, H, and He. The 
degree of ionization is insignificant (at 8000~ approximately i0-~). The thermodynamic com- 
position was calculated using a previous technique [7]. Figure i depicts the effective 
DHe-H, D~e, and binary DHe_ H diffusion coefficients. 

In this case DHe_ H > 0, and D~e changes sign, but are on the same order of magnitude. 
It is possible that the sign of DHe_ H remains constant only by accident, since it does not 
follow from the positive entropy derivation. We will show this by writing an equation for 
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entropy generation suitable for investigating diffusion [i], 

I N 
_____ I I 

k=i 

where Bk is the chemical potential of the k-th component. By the Curie law, 

N 

Ik= -- ~ =kjVT~h. 
j=1 

The coefficients ~kj are symmetric and related to Dij [3]. Since 

= p, r ) ;  = xt ( c l . . . c N o _ i ,  p, r ) ,  

f o r  c o n s t a n t  p and T i n  a mode l  o f  l o c a l  t h e r m o d y n a m i c  e q u i l i b r i u m ,  we o b t a i n ,  a s  was done 
a b o v e ,  e n t r o p y  g e n e r a t i o n  f o r  t h e  c a s e  o f  a t w o - e l e m e n t  m i x t u r e ,  

h,~,t,l \OXt/p,T \OCa/p,T \OZl ]p,T \OCa/p,T 

which must be positive. The equation for the mass flow of element a has the form [under the 
same assumptions as in Eq. (9)] 

L = ~ --~--h~j VCo. (10) 
h,j, t \ Oxt / p,T \OCa, p,T 

We cannot definitely conclude regarding the sign of the effective diffusion coefficients by 
comparing Eqs. (9) and (i0). In the same sense, there is no definite sign to the e~fective 
coefficients of thermal conductivity. 

In conclusion, the authors wish to express their appreciation to V. M. levlev, E. Z. 
Leibov, I. L. losilevskii, and V. K. Gryaznov for discussion of a number of crucial questions. 
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